
RockyLogic Application Note. AN-2: Triggering

AN-2: Triggering
In this Application Note we will describe the triggering mechanism implemented in all RockyLogic logic analyzer
products. The logic analyzer will be referred to as the Ant. This avoids having to write Ant8/Ant16 throughout the
Note. All the remarks apply to the Ant8, allowing for the lower pin count and absence of ClockIn on the smaller
product.
A trigger is an event you want to examine. Maybe you want to see what is happening on various wires when a
write strobe goes active, in which case the event is (write strobe goes active.) Maybe you want to see what is
happening when a chip is selected and the write strobe goes active, in which case the event is (chip select is
active and write strobe goes active.)
You want to see what happens before the event, you want to see the event itself, and you want to see what
happens after the event. So the job of a logic analyzer is to sample its incoming wires and continuously fill its
memory buffer until the trigger event happens, then to continue sampling for a while so that post-trigger data is
collected, then to stop.
Although 99% of logic analyzer usage employs simple triggering, the Ant can also be fired by a complex
triggering sequence. This note describes the possibilities.

Simple Triggering – Looking for the Write Strobe
A typical embedded microprocessor signals a write cycle by driving its WR# strobe low. We can record this event
by triggering on the falling edge of the WR# strobe, as shown below. This is a pattern trigger, the pattern being
falling edge on wire 1 and don't care on the other wires. P0 and P1 in the illustration refer to the two pattern
recognisers – this example only uses P0.

The second illustration shows the setup when we want to trigger on WR# falling edge if and only if CS# is low. In
other words, WR# falling and CS# low and other wires don't care.

Triggering on Read or Write
This sounds easy – set the trigger pattern as shown below. But we want to trigger on WR# falling or RD# falling.
The conditions are OR'd together, whereas they were AND'd together in the previous example. The solution is
that this is an Edge Trigger (which has its terms OR'd together), whilst the previous example was a Pattern
Trigger (which had its terms AND'd together.) OR'd terms=edge triggering and AND'd terms=pattern triggering is
broadly logical, but not the most memorable of terminology.

AN-2 page 1 21 April 2004

WR# falling edge CS# low and WR# falling

RockyLogic Application Note. AN-2: Triggering

An Advanced Trigger – (Read or Write) plus Chip Select
Now we are interested in the first bus event, either a read or a write. One way to express this as a trigger
condition is (CS# low and RD# falling) or (CS# low and WR# falling). Most logic analyzers have more than one
pattern detector, so we set the first pattern detector to (CS# low and RD# falling) and the second pattern detector
to (CS# low and WR# falling), as shown below:

Then we select and advanced triggering option to combine the two pattern detectors as a composite condition, as
shown below:

We select AND combining for both patterns, then select X0=a hit on pattern 0 and X1=a hit on pattern 1. Finally
selecting the trigger as (X0 or X1) gets us what we want. Of course, there are a number of other choices we
could have made to end up with the same triggering condition.

AN-2 page 2 21 April 2004

read or write

pattern 0 or pattern 1

RD# falling or WR# falling
edge trigger for ORing

RockyLogic Application Note. AN-2: Triggering

The Counter – Triggering on the 8th Write
This is pretty straightforward with an Advanced Triggering option. Here is the setup:

Similarly, we can catch a minimum pulse width violation with this setup:

In this case we calculate the counter/timer value by dividing the clock speed. For instance, 60ns with a 100MHz
(10ns) clock, gives a counter value of 6.

The Trigger State Machine
What is happening when we select the various triggering options?
First off, the pattern recognizer options are just setting various register bits which drive the combinational logic
within the logic analyzer – this is how the logic analyzer knows it should be searching for particular patterns,
ANDing or ORing the terms within the pattern recognizers, and combining the pattern recognizers to make
overall trigger conditions.
But we are also setting bits which will drive the fundamental state machine which drives the data capture
process. Here is a bubble representation of that state machine:

AN-2 page 3 21 April 2004

trigger when X0 occurs 8 times

trigger when X0 narrower than 6 clock ticks

RockyLogic Application Note. AN-2: Triggering

The transitions between the states are:
● Idle State: Move to Prefill when Run is signaled from the Host PC.

● Prefill State: Move to Search when the defined prefill percentage of the acquisition memory has been filled

● Search State: Move to Triggered if the SearchTriggered condition has been seen. Else move to Hit1 if the
SearchHit1 condition has been seen.

● Hit1 State: Move to Triggered if the Hit1Triggered condition has been seen. Else move to Hit2 if the Hit1Hit2
condition has been seen.

● Hit2 State: Move to Triggered if the Hit2Triggered condition has been seen. Else move to Hit1 if the Hit2Hit1
condition has been seen.

● Triggered State: Move to Done when the defined postfill percentage of the acquisition memory has been filled.

● Done State: Move to Idle when Reset is signaled from the Host PC.

So programming this state machine amounts to defining the conditions which cause it to change state. For
instance, take the simple trigger with which we started this note – trigger when a particular pattern is seen. In this
case we define X0 as a hit on Pattern Recognizer P0 and set SearchTriggered=X0.
A more complex example would be to trigger when X0, however defined, becomes false for the first time. We
want to set the state machine to traverse this path: Idle->Prefill->Search->Hit1->Triggered->Done. So we set
SearchHit1 = X0 and Hit1Triggered = (!X0).

Programming the Trigger State Machine
The RockyLogic software defines eight advanced triggering acquisition options. So how do we proceed if what
we want is not one of the magic eight options? For instance, maybe we want to arm the logic analyzer with P0
and trigger when P1 goes from true to false. What we need is to set X0=P0, X1=P1 and

SearchHit1 = X0
Hit1Hi2 = X1
Hit2Trigger = !X1

This is not a standard triggering option, but we can program it by inputting the equations directly via the
Advanced Triggering window. In the RockyLogic implementation each condition is an equation of up to four
variables. The variables are always called I0, I1, I2, and I3, and the meaning of these variables is described in
the help files and via context sensitive help. For example, the Hit2Triggered equation is a function of I0=X0 and
I1=X1, I2 is the timer counter, and I3 is the TrigIn input. Since we want to have Hit2Triggered=!X0 we set the

AN-2 page 4 21 April 2004

logic analyzer state machine

RockyLogic Application Note. AN-2: Triggering

Hit2Triggered box to (~I0). Similarly we set the SearchHit1 box to (I0) and the Hit1Hit2 box to (I1).
And that is all. We have now programmed the logic analyzer for our non-standard acquisition.

AN-2 page 5 21 April 2004

