
RockyLogic Application Note. AN-6: The antif.dll Software Library

AN-6: The antif.dll Software Library
1. Summary
This application note describes the RockyLogic antif.dll software library – a software interface
between an application program and an Ant module attached to a USB port on a local or
remote computer. Throughout the note, unless otherwise qualified, an Ant refers to either an
Ant8 or an Ant16 or an Ant18e.

2. Introduction
antif.dll opens up the Ant support software to allow user programmability, including running
programs across a network. Typically Ant application software is implemented as three
layers:

a. the graphical user interface (GUI) layer, which interfaces to
b. the antif interface DLL, the subject of this application note. This deals with the logical

control of the Ant and interfaces across a TCP link to
c. a server program which handles low-level control of the Ants. The interface to the

server program will be of little interest to most users, but it is described in application
note AN-3.

antif.dll has a standard C language interface and can be called from any language which can
call functions in C DLLs.
Typically programs using the DLL will go through these stages:

1. Initialize the DLL
2. Connect to the Ant server
3. Find out which Ant units are plugged in
4. Open the selected Ant
5. Set the logic analyzer parameters
6. Tell the Ant to run
7. Query the Ant status until it has triggered and stopped
8. Read the captured data from the Ant
9. Close the Ant
10.Disconnect from the Ant server
11.Free any DLL resources

2.1 Servers
antif.dll needs to interface to a server which drives the Ants over USB links. These options
are supported:

AN-6 page 1 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

● a built-in server. Connecting to the server with a NULL host name will automatically
connect to the built-in server.

● a server program running on the same computer. In accordance with the TCP/IP
specification, a host name of 127.0.0.1 will automatically select the same computer.
On just about every computer, you can get the same effect by connecting to host
name localhost, though technically this is not guaranteed.

● a server program running on a connection across a network. Set the host name to
either the name or the dotted quad address of the computer on which the server is
running. For instance test_lab or 192.168.1.26.

If the built-in server is not used, you will need a separate standalone server. The
antserve.exe program is the same as the built-in server, with the addition of a small control
GUI.

3. Library Functions
Basic functions are

● RL_Info returns the basic operating parameters of an Ant module.
● RL_Initialize initializes the DLL .
● RL_Finalize releases resources when the program completes.

Connecting to the server is handled by
● RL_ConnectToServer opens a connection to the server.
● RL_DisconnectFromServer close the connection.
● RL_QueryServerID returns the server's text string ID.

For connecting to an Ant, the functions are
● RL_AntCount reports the number of Ants connected to the server.
● RL_AntInfo gives the name and status of each Ant.
● RL_OpenAnt opens the selected Ant.
● RL_CloseAnt closes the Ant.

Acquisition parameters are set via
● RL_SetHitPattern
● RL_SetXFunction
● RL_SetStateMachineFunction
● RL_SetClockIx
● RL_SetTriggerPos
● RL_SetTimerCounter
● RL_SetThreshold.

AN-6 page 2 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

They can be read back via
● RL_GetHitPattern
● RL_GetXFunction
● RL_GetStateMachineFunction
● RL_GetClockIx
● RL_GetTriggerPos
● RL_GetTimerCounter
● RL_GetThreshold.

Run the Ant via
● RL_Run starts and stops the logic analyzer.
● RL_GetRunStatus tells whether the analyzer is stopped or still searching for a pattern
● RL_Readback retrieves the captured data from the Ant.

Frequency Counter functions, only applying to the Ant18e, are
● RL_FCRun sets the frequency counter parameters and starts the counter
● RL_FCGetStatus returns the running/finished status for the counters
● RL_FCGetCounts returns the per-channel counter totals.

Miscellaneous functions are
● RL_GetPinStatus will return the status of the pins on the Ant, when an acquisition is

not in progress
● RL_GetLastErrorMessage
● RL_Heartbeat reassures the server that the client is still running.
● RL_SetScratchReg stores a 32-bit value to the server.
● RL_GetScratchReg retrieves the scratch register.
● RL_GetClockInfo converts a clock index to numerical and human readable periods.

All the function descriptions should be read in conjunction with the antif.h header file, which
contains definitions of the constants and data structures used by the library. The return value
from every function is RL_OK if successful, otherwise an error code as defined in the header
file.

3.1 Information
RL_RESULT RL_Info(int AntType, TAntParams* pInfo, int InfoBytes);
Parameters
AntType 114 (the 'r' character) for Ant8, 111 ('o') for Ant16, 99 ('c') for Ant18e.
pInfo pointer to the buffer to receive information about the Ant capabilities

AN-6 page 3 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

InfoBytes size of the information structure.
Remarks
The InfoBytes parameter guards against future software revisions writing outside the pInfo
structure. The members of the TAntParams structure are defined in the antif.h header file;
this structure is extended from time to time as new capabilities are added to the software.
Example

TAntParams params;
RL_RESULT retval = RL_Info('r', ¶ms, sizeof(params));
printf(“The Ant8 has %d channels\n”, params.Channels);

3.2 DLL Initialization and Termination
RL_RESULT RL_Initialize(RL_HANDLE* h);
Parameters
h handle used for subsequent access to the DLL routines.
Remarks
This function allocates internal structures.
Example

RL_HANDLE h=NULL;
RL_RESULT retval = RL_Initialize(&h);
char* result = (retval==RL_OK) ? ”success” : ”fail”;
printf(“DLL Initialize result: %s\n”, result);

RL_RESULT RL_Finalize(RL_HANDLE h);
Parameters
h handle returned from a previous RL_Initialize.
Remarks
This function deallocates internal structures. As a consequence, any open connection via the
server to an Ant is closed and an open connection to a server is closed. The handle becomes
invalid.
Example

RL_RESULT retval = RL_Finalize(h);
char* result = (retval==RL_OK) ? ”success” : ”fail”;
printf(“DLL Finalize result: %s\n”, result);

3.3 Connecting to a Server and Opening an Ant
RL_RESULT RL_ConnectToServer(RL_HANDLE h, char *Host, int Port);
Parameters
h handle returned from a previous RL_Initialize.
Host name of the TCP/IP target.

AN-6 page 4 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

Port port on which the server is listening.
Remarks
Typically the connection is to a server running on the same computer, in which case the
server's host computer has an IP address of 127.0.0.1 and is conventionally known as
localhost. In this case Host can be set to either localhost or 127.0.0.1.
For connections across a network, set Host to either the name or the dotted quad address of
the computer on which the server is running. For instance test_lab or 192.168.1.26.
The Port parameter must match the port number with which the server was started. Usually
the server is set to listen on the DEFAULT_PORT.
Example

char Host[] = LOCALHOST;
RL_RESULT retval = RL_ConnectToServer(h, Host, DEFAULT_PORT);
char* result = (retval==RL_OK) ? ”connected” : ”failed”;
printf(“ConnectToServer result: %s\n”, result);

RL_RESULT RL_DisconnectFromServer(RL_HANDLE h);
Parameters
h handle returned from a previous RL_Initialize.
Remarks
Any open connection via the server to an Ant is closed and an open connection to the server
is closed. The handle remains valid and can either be used for subsequent operations or
released via RL_Finalize().
Example

RL_RESULT retval = RL_DisconnectFromServer(h);
char* result = (retval==RL_OK) ? ”success” : ”fail”;
printf(“DisconnectFromServer result: %s\n”, result);

RL_RESULT RL_QueryServerID(RL_HANDLE h, char*s, int len);
Parameters
h handle returned from a previous RL_Initialize.
s character string for the ID
len max length ID string which can be returned, not including any terminating
zero.
Remarks
Returns an identifying string from the server. The format of the ID is shown in the following
example:

antserver,Jan 10 2006,Jan 23 2006,20:08:52

The fields are the string antserver, a comma, the creation date (i.e. version) of the server,

AN-6 page 5 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

another comma, the date on which the server started running, another comma, and the time
at which the server started running.
Example

RL_HANDLE h=NULL;
char str[64];
memset(str, 0, sizeof(str));
RL_RESULT retval = RL_QueryServerID(h, str, sizeof(str)-1);
char* result = (retval==RL_OK) ? str : ”fail”;
printf(“QueryServerID result: %s\n”, result);

RL_RESULT RL_AntCount(RL_HANDLE h, int* pCount);
Parameters
h handle returned from a previous RL_Initialize.
pCount number of Ants on the server
Remarks
The server reports all the Ants it knows about, whether or not they are plugged in or busy.
The server's rule is to put an Ant on its list once it is detected. If the Ant is then unplugged it
is marked as missing, but not removed from the list.
Example

int Count = 0;
RL_RESULT retval = RL_AntCount(h, &Count);
char str[64];
sprintf(str, “%d”, Count);
char* result = (retval==RL_OK) ? str : ”fail”;
printf(“AntCount result: %s\n”, result);

RL_RESULT RL_AntInfo(RL_HANDLE h, int index, char* name, char*
flags);
Parameters
h handle returned from a previous RL_Initialize.
index must be within the Count returned by AntCount()
name buffer to receive the Ant's USB ID string – 8 characters.
flags buffer to receive the Ant's status flags – 3 characters.
Remarks
The status flags are as follows:

AN-6 page 6 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

Position Character and Meaning
0 r - Ant8

o – Ant16
c - Ant18e

1 f - free
b - busy

2 p - present
m - missing

Example
char name[ANT_NAME_LENGTH+1];
char flags[FLAGS_LENGTH+1];
memset(name, 0, sizeof(name));
memset(flags, 0, sizeof(flags));
RL_RESULT retval = RL_AntInfo(h, 0, name, flags);

char c = flags[0];
char* mtype = (c=='r') ? "Ant8 " : ((c=='o') ? "Ant16" : "Ant18e");
c = flags[1];
char* busy = (c=='b') ? "busy" : ((c=='f') ? "free" : "?");
c = flags[2];
char* present = (c=='p') ? "present" : ((c=='m') ? "missing" : "?");

char str[64];
sprintf(str, “%s %s %s %s %s”, name, flags, mtype, busy, present);
char* result = (retval==RL_OK) ? str : ”fail”;
printf(“AntInfo result: %s\n”, result);

RL_RESULT RL_OpenAnt(RL_HANDLE h, char* name);
Parameters
h handle returned from a previous RL_Initialize.
name name returned from a previous RL_AntInfo .
Remarks
Opens a connection to the Ant and sets the sample acquisition parameters to default values.
Example

char name[ANT_NAME_LENGTH+1];
...
// fill via RL_AntInfo()
...
RL_RESULT retval = RL_OpenAnt(h, name);
char* result = (retval==RL_OK) ? ”success” : ”fail”;
printf(“OpenAnt result: %s\n”, result);

RL_RESULT RL_CloseAnt(RL_HANDLE h);
Parameters
h handle returned from a previous RL_Initialize.

AN-6 page 7 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

Remarks
Close the connection to the Ant, which can then be used by another application.
Example

RL_RESULT retval = RL_CloseAnt(h);
char* result = (retval==RL_OK) ? ”success” : ”fail”;
printf(“ CloseAnt result: %s\n”, result);

3.4 Setting Acquisition Parameters
Acquisition parameters can only be set after an Ant has been opened. This is so that the
software can check the parameters for legality – the Ant8 requires 8-element hit patterns, the
Ant16 hit patterns must have 16 elements, the Ant18e hit patterns must have 18 elements.
All acquisition parameters can be read back - each SetParameter function is paired with a
GetParameter function.
RL_RESULT RL_SetHitPattern(RL_HANDLE h, int ix, bool AndCombine,
char* Pat);
Parameters
h handle returned from a previous RL_Initialize.
ix must be within the PatternRecognizers count returned by RL_Info().
AndCombine true = AND the pattern elements, false = OR the elements.
Pat match pattern – see below.
Remarks
Pat points to a null-terminated character string which has one position for each input to the
Ant. The characters determine the input signals which trigger this pattern recognizer. The
encoding of the string is follows:

Character Input signal is
- don't care
0 low
1 high
R rising
F falling
E rising or falling

For instance, the pattern for an Ant8 could be “F---0000” which means that the pattern
matches a falling edge on channel 0, anything on channels 1 to 3, and low on channels 4 to
7.
AndCombine determines how matches on the individual signals are combined. If
AndCombine is true, the pattern as a whole matches if all of the individual channels match. If

AN-6 page 8 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

AndCombine is false, the pattern as a whole matches if just one of the individual channels
match. For this scheme to work, don't care is a match when AndCombine is true; when
AndCombine is false, don't care is not a match.
Example

RL_RESULT retval = RL_SetHitPattern(h, 0, true, “F---0000”);

RL_RESULT RL_GetHitPattern(RL_HANDLE h, int ix, bool* pAndCombine,
char* pBuff, int BuffLen);
Parameters
h handle returned from a previous RL_Initialize.
ix must be within the PatternRecognizers count returned by RL_Info().
pAndCombine receives the stored value of AndCombine.
pBuff receives the stored value of the match pattern – see RL_SetHitPattern.
BuffLen length of the buffer pointed to by pBuff.
Remarks
BuffLen must be large enough to accommodate the null-terminated hit pattern – 9 characters
for an Ant8, 17 characters for an Ant16, and 19 characters for an Ant18e.
Example

char Buff[17];
bool com;
RL_RESULT retval = RL_GetHitPattern(h, 0, &com, Buff, sizeof(Buff));

RL_RESULT RL_SetXFunction(RL_HANDLE h, int ix, char* Func);
Parameters
h handle returned from a previous RL_Initialize.
ix must be within the XFunctions count returned by RL_Info()
Func X function string – see below.
Remarks
The Ants have two pattern recognizers – P0 and P1. The matches on P1 and P2 can be
combined in an arbitrary way in the XFunction combiners. There are two of these combiners
– X0 and X1. Func points to a null-terminated character string which defines the combining
function. The operators which can be used in the combining functions are as follows:

AN-6 page 9 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

Character Operation
& and
| or
^ xor
! not

Opening and closing parentheses - (and) - can also be used. Spaces are ignored.
Surrounding the entire function with parentheses is conventional but optional.
Typically we set X0 and X1 to simple functions. For instance “(P0)” or “(P1)”. But we can, for
instance, set X0 to P0 OR P1: “(P0 | P1)”.
Example

RL_RESULT retval = RL_SetXFunction(h, 0, “(P0 ^ P1)”);

RL_RESULT RL_GetXFunction(RL_HANDLE h, int ix, char* pBuff, int
BuffLen);
This function is analogous to RL_GetHitPattern()

RL_RESULT RL_SetTimerCounter(RL_HANDLE h, int Val, bool TCIsTimer);
Parameters
h handle returned from a previous RL_Initialize.
Val must be within the CounterSize value returned by RL_Info().
TCIsTimer true: use the Timer/Counter as a timer, false: use as a counter.
Remarks
The Timer/Counter (TC) is automatically loaded in the Idle state and reloaded

● on entering the Hit1 state or
● on entering the Hit2 state or
● when in the Hit1 state or
● when in the Hit2 states.

Exactly when the TC is reloaded is determined by an expression entered by the
RL_SetStateMachineFunction() function (see below for a description of this function).
TC counts down to zero

● on entering the Hit1 state or
● on entering the Hit2 state or
● when in the Hit1 state or
● when in the Hit2 state

AN-6 page 10 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

As before, exactly when the TC counts down is determined by an expression entered by the
RL_SetStateMachineFunction() function. The down count count stops at zero.
Example

RL_RESULT retval = RL_SetTimerCounter(h, 25, false);

RL_RESULT RL_GetTimerCounter(RL_HANDLE h, int* pVal, bool*
pTCIsTimer);
Returns the current value loaded into the timer/counter to the integer pointed to by pVal. Also
sets pTCIsTimer to true if the timer/counter is a timer, and to false if it is a counter.

RL_RESULT RL_SetStateMachineFunction(RL_HANDLE h, int ix, char* Fnc);
Parameters
h handle returned from a previous RL_Initialize.
ix must be within the StateMachineEquations count returned by RL_Info()
Fnc function string – see below.
Remarks
The state machines which control the operation of the Ant8 and the Ant16 are described in
the help files. Each transition in the state machine is controlled by a function, the basic rule
being “make the transition if the function evaluates to true.”
There are eight functions. Each is an arbitrary function or up to four inputs, known as I0, I1, I2,
and I3.
Unused inputs are always true. The external trigger input is not implemented in the Ant8 and
the equation input for the external trigger defaults to true .

AN-6 page 11 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

Index Function Inputs
0 Timer/Counter enable I0: in Hit1 state

I1: in Hit2 state
I2: entered Hit1 state
I3: entered Hit2 state

1 Timer/Counter reload I0: in Hit1 state
I1: in Hit2 state
I2: entered Hit1 state
I3: entered Hit2 state

2 transition from Hit2 state to Hit1
state

I0: X0
I1: X1
I2: TC is zero
I3: unused

3 transition from Hit2 state to
Triggered state

I0: X0
I1: X1
I2: TC is zero
I3: Trigger Input

4 transition from Hit1 state to Hit2
state

I0: X0
I1: X1
I2: TC is zero
I3: unused

5 transition from Hit1 state to
Triggered state

I0: X0
I1: X1
I2: TC is zero
I3: Trigger Input

6 transition from Search state to
Hit1 state

I0: X0
I1: X1
I2: unused
I3: unused

7 transition from Search state to
Triggered state

I0: X0
I1: X1
I2: unused
I3: Trigger Input

Example
RL_RESULT retval = RL_SetStateMachineFunction(h, 7, "I0 | I1");
// trigger as soon as there is a match on either X0 or X1

RL_RESULT RL_GetStateMachineFunction(RL_HANDLE h, int ix, char*
pBuff, int BuffLen);
Parameters
h handle returned from a previous RL_Initialize.
ix must be within the StateMachineEquations count returned by RL_Info()

AN-6 page 12 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

pBuff receives the stored value of the function.
BuffLen length of the buffer pointed to by pBuff.
Remarks
BuffLen must be large enough to accommodate the null-terminated function.
Example

char Buff[32];
RL_RESULT retval = RL_GetStateMachineFunction(h, 0, Buff, sizeof(Buff));

RL_RESULT RL_SetClockIx(RL_HANDLE h, int ClkIx);
Parameters
h handle returned from a previous RL_Initialize.
ClkIx must be one of the following values:

#define K_Sync 0 /* Synchronous */
#define K_500MHz 1 /* 500MHz - 2ns */
#define K_250MHz 2 /* 250MHz - 4ns */
#define K_200MHz 3 /* 200MHz - 5ns */
#define K_100MHz 4 /* 100MHz - 10ns */
#define K_50MHz 5 /* 50MHz - 20ns */
#define K_25MHz 6 /* 25MHz - 40ns */
#define K_20MHz 7 /* 20MHz - 50ns */
#define K_10MHz 8 /* 10MHz -100ns */
#define K_5MHz 9 /* 5MHz -200ns */
#define K_2_5MHz 10 /* 2.5MHz -400ns */
#define K_2MHz 11 /* 2MHz -500ns */
#define K_1MHz 12 /* 1MHz - 1us */
#define K_500KHz 13 /* 500KHz - 2us */
#define K_250KHz 14 /* 250KHz - 4us */
#define K_200KHz 15 /* 200KHz - 5us */
#define K_100KHz 16 /* 100KHz - 10us */
#define K_50KHz 17 /* 50KHz - 20us */
#define K_25KHz 18 /* 25KHz - 40us */
#define K_20KHz 19 /* 20KHz - 50us */
#define K_10KHz 20 /* 10KHz -100us */
#define K_5KHz 21 /* 5KHz -200us */
#define K_2_5KHz 22 /* 2.5KHz -400us */
#define K_2KHz 23 /* 2KHz -500us */
#define K_1KHz 24 /* 1KHz - 1ms */
#define K_500Hz 25 /* 500Hz - 2ms */
#define K_250Hz 26 /* 250Hz - 4ms */
#define K_200Hz 27 /* 200Hz - 5ms */
#define K_100Hz 28 /* 100Hz - 10ms */
#define K_Sync_R K_Sync /* Synchronous, rising edge */
#define K_Sync_F 29 /* Synchronous, falling edge */
#define K_Sync_E 30 /* Synchronous, either edge */
#define K_1GHz 31 /* 1GHz - 1ns */

Remarks
This sets the speed of the internal clock which samples the incoming data.

Ant8: Select a value between 100Hz and 500MHz.
Ant16: As Ant8, or the Ant16 can sample data synchronously on the rising edge of an

AN-6 page 13 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

external clock. The maximum speed of the external clock is 100MHz.
Ant18e: As Ant16, or 1GHz, or the Ant18e can sample data synchronously on the rising
edge, falling edge, or either edge of an external clock. The maximum speed of the
external clock is 100MHz.

The Ants support both of the common timing sequences:
● the 5-2-1 sequence of frequencies. For instance: 50MHz, 20MHz, 10MHz
● the 1-2-4 sequence of times. For instance: 10ns, 20ns, 40ns

Example
RL_RESULT retval = RL_SetClockIx(h, K_100MHz);

RL_RESULT RL_GetClockIx(RL_HANDLE h, int* pClkIx);
Returns the current clock index to the integer pointed to by pClkIx.

RL_RESULT RL_SetTriggerPos(RL_HANDLE h, int Percent);
Parameters
h handle returned from a previous RL_Initialize.
Percent position of the trigger in the Ant's buffer, as a percentage of the buffer size.
Remarks
The trigger position divides the logic analyzer's acquisition memory into the pre-trigger part
and the post-trigger part. The pre-trigger part of the memory is the minimum amount which
must be filled with data samples before the logic analyzer starts searching for the trigger
pattern. The post-trigger part of memory is filled after the trigger pattern is detected, then the
analyzer stops.
The trigger position can vary from 1% to 99%.
Example

RL_RESULT retval = RL_SetTriggerPos(h, 50);

RL_RESULT RL_GetTriggerPos(RL_HANDLE h, int* pPercent);
Returns the current trigger position, as a percentage, to the integer pointed to by pPercent.

RL_RESULT RL_SetThreshold(RL_HANDLE h, int ByteIx, int ThreshValX10);
Parameters
h handle returned from a previous RL_Initialize.
ByteIx must be within the byte count deduced from Channels returned by RL_Info().
ThreshValX10 threshold voltage in tenths of a volt.

AN-6 page 14 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

Remarks
The threshold is the voltage level at which the analyzer discriminates between a low signal (a
zero) and a high signal (a one).
The Ant8 sets the threshold to 1.4V for all channels and this function is a no-op.
The Ant16 and the Ant18e allow the threshold to be programmed to a value between 0.8V
and 2.5V. For the Ant16, the threshold is set separately for 8-bit groups of channels.
ByteIx=0 Channels 0 to 7
ByteIx=1 Channels 8 to 15
For the Ant18e, the threshold is set separately for 9-bit groups of channels.
ByteIx=0 Channels 0 to 7 and 16
ByteIx=1 Channels 8 to 15 and 17
Example

RL_RESULT retval = RL_SetThreshold(h, 0, 12); // 1.2 volts

RL_RESULT RL_GetThreshold(RL_HANDLE h, int ByteIx, int*
pThreshValX10);
Returns the current threshold voltage, times 10, for byte ByteIx to the integer pointed to by
pThreshValX10.

3.5 Starting and Stopping the Ant and Reading Status and Data
RL_RESULT RL_Run(RL_HANDLE h, bool run);
Parameters
h handle returned from a previous RL_Initialize.
run true: start an acquisition, false: prematurely terminate an acquisition.
Remarks
Calling this function with run=true instructs the software to configure the Ant, download all the
acquisition parameters into registers, and start acquiring a data sample. The application code
can then monitor the status of the Ant via RL_ GetRunStatus() - see below.
Normally the Ant will search for the trigger conditions, trigger, and stop. The acquired data
can then be read back via the RL_Readback() function.
If the trigger condition does not occur the Ant will not trigger and it may be necessary to force
a stop by calling RL_Run() with run=false.
Example

RL_RESULT retval = RL_Run(h, true); // start
...
...
retval = RL_Run(h, false); // stalled? force a stop

AN-6 page 15 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

RL_RESULT RL_GetRunStatus(RL_HANDLE h, int* Status);
Parameters
h handle returned from a previous RL_Initialize.
Status pointer to an integer which will be filled in with the Ant's status.
Remarks
Status is returned as an 8-bit code:

● bit 7: set if the Ant has triggered
● bit 6: set if the Ant's acquisition memory has been written at least once
● bits 5..0: the state of the internal state machine

The state machine status in bits 5..0 is encoded as follows:
1. in the Init state – not started
2. in the Prefill state – not yet searching for a trigger
3. in the Search state
4. in the Hit1 state
5. in the Hit2 state
6. in the Triggered state - has triggered and is now postfilling
7. in the Done state - postfill completed

Note
In early iterations of the DLL, this function had a third parameter and returned the Trigger
position in the acquisition memory.
Example

int status=0;
RL_RESULT retval = RL_GetRunStatus(h, &status);

RL_RESULT RL_Readback(RL_HANDLE h, BYTE *pBuff, int BuffSize, int
Dummy);
Parameters
h handle returned from a previous RL_Initialize.
pBuff memory to store the readback.
Buffsize size in bytes of the space pointed to by pBuff.
Remarks
The Ant18e implements transitional sampling, a feature not implemented in the Ant8 and the
Ant16. The Ant8 and the Ant16 report straightforward sample values - for instance, 5,5,3,7. In
contrast, the Ant18e reports pairs of numbers (sample, repetition), so that (5,2), (9,3), (1,5)
means that the samples were 5, 5, 9, 9, 9, 1, 1, 1, 1, 1. This is the mechanism the Ant18e

AN-6 page 16 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

uses to get very large buffer depths – the repetition value can be up to 262144.
A byproduct of implementing transitional sampling is that the sampling buffer depth in the
Ant18e varies between 6K and 8K, depending on the sampling mode used.
Readback() deals with these complexities and provides a simple, unified programming
interface by implementing these mechanisms:

1. all readback data from all Ant models is reported in (sample, repetition) format. These
pairs are referred to as readback data slots.

2. (sample, repetition) pairs are returned packed into consecutive DWORDs in the buffer
pointed to by pBuff. The packing sequence is as follow:
DWORD 0 sample 0
DWORD 1 repetitions for sample 0
DWORD 2 sample 1
DWORD 3 repetitions for sample 1
DWORD 4 sample 2
DWORD 5 repetitions for sample 2
...
...

To read back from an Ant, the procedure is
1. determine the number of slots via RL_GetVal()
2. determine the bytes per slot via RL_GetVal(). Currently this is always 8.
3. call readback for the (number of slots) * (bytes per slot)

The results are meaningless unless the Ant is in Done state. Also RL_GetRunStatus() must
have been called first.
Example

int status=0, trigpos=0;
RL_RESULT retval = RL_GetRunStatus(h, &status, &trigpos);
if ((status & 0x3f) == FPGA_ACQUISITION_STATE_done) {
 int TotalSlots = (int)RL_GetVal(h, RL_GETVAL_SLOTCOUNT);
 int BytesPerSlot = (int)RL_GetVal(h, RL_GETVAL_SLOTBYTES);

 int ByteCount = TotalSlots * BytesPerSlot;

 BYTE *Buff = new BYTE[ByteCount];
 RL_RESULT retval = RL_Readback(h, Buff, ByteCount, 0);
...
}

Note
In early iterations of the DLL the Dummy fourth parameter to this function set the first sample
to be read back, which is now always sample 0.

AN-6 page 17 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

3.6 Frequency Counter Functions
The frequency counter functions only apply to the Ant18e. See application note AN-7 The
Ant18e Frequency and Event Counter for more information.
The frequency counting functionality is supported by these software library functions:

● RL_FCRun sets the parameters and starts or stops the frequency counter.
● RL_FCGetStatus returns the frequency counter status.
● RL_FCGetCount returns the per-channel status and the per-channel counts.

RL_RESULT RL_FCRun(RL_HANDLE h, int AOp, int AEdges, int AGateLength,
char *APat, bool ARun)
Parameters
h handle returned from a previous RL_Initialize.
AOp operation type. FC_OP_FREQ or FC_OP_PERIOD or FC_OP_EVENT.
AEdges define the start and stop edges in period mode.
AGateLength define the gate length in frequency counter mode.
Apat pointer to the pattern for event counting.
ARun true (1) to start, false (0) to stop.
Remarks
The parameter values for AOp, AEdges, and AGateLength are specified in antif.h
The pattern is a string of high ('1'), low ('0'), and don't care ('-') characters. Where necessary it
is padded with don't care characters. The first character in the string applies to channel 0, the
second to channel 1, and so on.
To force a counter stop, set ARun to 0 - the other parameters are don't care in this case.
In period mode, the counter measures from the A edge to the B edge. The constants for
rising and falling A and B edges are OR'd together to form the AEdge value.
Example

RL_RESULT retval = RL_FCRun(h, FC_OP_PERIOD,
 FC_EDGEA_RISING | FC_EDGEB_RISING,
 0, “--------”, true);
// counter now running in period measurement mode

AN-6 page 18 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

RL_DLL RL_FCGetStatus(RL_HANDLE h, int *pStat, int Alen)
Parameters
h handle returned from a previous RL_Initialize.
pStat pointer to the buffer to receive the Frequency Counter status.
Alen number of channels to report, typically 19 for the Ant18e.
Remarks
The first value (pStat[0]) has bit zero set if the frequency counter is busy, clear if idle. Other
bits are reserved.
The per-channel status is encoded as follows (other bits are reserved) in the remaining ints –
pStat[1] to pStat[18]:
bits 2..0 0 channel is idle

1 channel is counting
2 channel is finished
3 reserved
4 channel was forced to stop by host command (forcedFinished)
5 to 7 reserved

bit 3 set if the A edge has been seen
bit 4 set if the B edge has been seen
Example

int status[1+18];
RL_RESULT retval = RL_FCGetStatus(h, status, 19);
bool CounterIsBusy = ((status[0] & 1) == 1);

RL_RESULT RL_FCGetCounts(RL_HANDLE h, __int64 *pVal, int AChans);
Parameters
h handle returned from a previous RL_Initialize.
pVal pointer to the buffer to receive the per-channel counter values.
AChans number of channels to read, starting from channel 0. Usually 18.

Remarks
The per-channel counter values are 64-bit unsigned integers. The current count value can be
read back wile the counter is running.
Example

__int64 val[18];
RL_RESULT retval = RL_FCGetCount(h, val, 18);

AN-6 page 19 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

3.7 Miscellaneous Functions
RL_RESULT RL_GetPinStatus(RL_HANDLE h, char* pStatus, int StatusLen);
Parameters
h handle returned from a previous RL_Initialize.
pStatus memory to store the status. One character per channel.
StatusLen size in chars of the space pointed to by pStatus.
Remarks
This function halts any acquisition under way, reconfigures the Ant, if necessary, and
samples the input channels. The status returned is encoded as a character string. R, F, and
B denote that a rising edge, a falling edge, or both edges have been seen since the last call
to this function. The status string is not automatically null terminated.

Character Input signal
0 low
1 high
R rising
F falling
B rising and falling

Example
char Stat[17];
memset(Stat, 0, sizeof(Stat));
RL_RESULT retval = RL_GetPinStatus(h, Stat, sizeof(Stat));

RL_RESULT RL_GetLastErrorMessage(RL_HANDLE h, char* s, int len);
Parameters
h handle returned from a previous RL_Initialize.
s buffer to store the error message.
len size in chars of the space pointed to by s.
Remarks
This function returns the last error message from the server as a null terminated character
string. The message is truncated if the buffer is too small.
Example

char Err[200];
memset(Err, 0, sizeof(Err));
RL_RESULT retval = RL_GetLastErrorMessage(h, Err, sizeof(Err));
printf(“Last error message was: %s\n”, Err);

AN-6 page 20 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

RL_RESULT RL_Heartbeat(RL_HANDLE h);
Parameters
h handle returned from a previous RL_Initialize.
Remarks
How does a server distinguish between a quiet client and a client who has died? Usually via a
heartbeat message from the client. If the heartbeat is not heard for a certain period – typically
ten minutes – the server can assume the client has died and any resources the client was
holding (for instance an Ant which has been opened) can be released for another client
application to use. Although not implemented in the current release of the server, this
functionality is implemented via the RL_Heartbeat function, which should be called every
minute of so.
Example

RL_RESULT retval = RL_Heartbeat(h);

RL_RESULT RL_SetScratchReg(RL_HANDLE h, int local, int val);
Parameters
h handle returned from a previous RL_Initialize.
local zero: store in the global register, non-zero: store in this client's register
val value stored in the server.
Remarks
This function stores an 32 bits of information in a register in the server. Each client has
access to two registers:

● the private register can only be written or read by the client
● the global register can be written or read by any connected client.

Example
RL_RESULT retval = RL_SetScratchReg(h, 0, 1); // global reg

RL_RESULT RL_SetVal(RL_HANDLE h, int param, QWORD val);
Parameters
h handle returned from a previous RL_Initialize.
param index of the parameter to set. None defined at present.
val parameter value.
Remarks
This is an all-purpose function for setting parameters. The parameter is an unsigned 64 bit
integer.

AN-6 page 21 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

RL_RESULT RL_GetVal(RL_HANDLE h, int param, QWORD* pVal);
Parameters
h handle returned from a previous RL_Initialize.
param index of the parameter to get. None defined at present.
pVal pointer to location to store the parameter.
Remarks
This is an all-purpose function for getting parameters. The parameter is returned as an
unsigned 64 bit integer.
The following parameters are defined:

Parameter Meaning
RL_GETVAL_SAMPLECOUNT Total samples, summed by adding up the

repetitions for each slot. For the Ant18e,
this number can be several billion.

RL_GETVAL_TRIGGERPOS Trigger position, a Sample value, not a
Slot value.

RL_GETVAL_SLOTCOUNT Slot Count. A small integer.
RL_GETVAL_SLOTBYTES Bytes per slot for a (value, count) pair.

See under RL_Readback().

RL_RESULT RL_ClockInfo(int ClkIx, int *ClockPeriod, int
*ClockPeriodUnit, char *pTagBuff, int TagBuffSize)

Parameters
ClkIx clock index. See the table under RL_SetClockIx().
ClockPeriod pointer to an integer which is filled in with the clock period.
ClockPeriodUnit pointer to an integer which is filled in with the clock period units.
pTagBuff pointer to an character buffer which is filled in with the clock name.
TagBuffSize length of the character buffer
Remarks
The clock period units codes are defined in antif.h
Calling this function with a clock index of K_100MHz (i.e. 4) will return ClockPeriod=10 and
ClockPeriodUnit=TIME_UNIT_NS, and the tag buffer will be filled in with " 100MHz".

AN-6 page 22 February 21, 2007

RockyLogic Application Note. AN-6: The antif.dll Software Library

4. Default Acquisition Parameters
A successful call to RL_OpenAnt() sets the acquisition parameters to default values, as
follows:

Parameter Value
hit patterns all “--------...” and AndCombine=true
X functions all “(P0)”
state machine functions all “F” except the transition from Search state to

Triggered state = “(I0)”
sample clock 100MHz
trigger position 50%
timer/counter 2 and the timer/counter is a counter
thresholds all 1.4V

These values can be confirmed by calling the relevant RL_Get...() functions.

5. Revision History
Date Revision
25 January 2006 Initial Version.
21 February 2007 New functions for Frequency Counting.

General updating.

© 2006 to 2007 RockyLogic Ltd
For more information see www.rockylogic.com

AN-6 page 23 February 21, 2007

http://www.rockylogic.com/

	1. Summary
	2. Introduction
	2.1 Servers

	3. Library Functions
	3.1 Information
	3.2 DLL Initialization and Termination
	3.3 Connecting to a Server and Opening an Ant
	3.4 Setting Acquisition Parameters
	3.5 Starting and Stopping the Ant and Reading Status and Data
	3.6 Frequency Counter Functions
	3.7 Miscellaneous Functions

	4. Default Acquisition Parameters
	5. Revision History

